Brief Communications

Synthesis of N-alkylamides of 3-fluoroalkylaziridine-2-carboxylic acids

O. G. Khomutov,* V. I. Filyakova, and K. I. Pashkevich

Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, 20 ul. S. Kovalevskoy, 620219 Ekaterinburg, Russian Federation. Fax: 007 (343 2) 440 026. E-mail: pashk@tantra.ural.ru

The N-alkylamides of 3-fluoroalkylaziridine-2-carboxylic acids have been prepared for the first time by the interaction of ethyl β -fluoroalkyl- α , β -dibromocarboxylates with primary amines.

Key words: esters of α,β -dibromo- β -fluoroalkylcarboxylic acids, N-alkylamides of 3-fluoroalkylaziridine-2-carboxylic acids.

Esters of α -bromo- α , β -unsaturated carboxylic acids containing no fluorine react with primary amines to give aziridine-2-carboxylic acids. We found that during the interaction of ethyl α , β -dibromo- β -fluoroalkyl-carboxylates (1)* with primary amines (Scheme 1), closure of an aziridine ring is accompanied by amidation to give previously unknown 2-fluoroalkylaziridine-3-carboxamides 2 (Tables 1 and 2). This is explained by the fact that the reactivity of the ethoxycarbonyl group substantially increases due to the effect of the electron-with-drawing polyfluoroalkyl substituent.

Obviously, the first step of this reaction involves dehydrobromination of α,β -dibrominated ester 1 to the α -bromo- α,β -unsaturated ester, by analogy with β -fluoro-alkyl- α,β -dibromoketones.³

The reaction of α,β -dibrominated ester 1a with NH₃ does not lead to the expected aziridine 2. Instead, a complex mixture of products is formed; the main component of this mixture, the amide of 3-amino-4,4,4-tri-

Scheme 1

Scheme 1 RNH_2 RF RNH_2 RF RF

 $R^F = CF_3$ (1a, 2a-c); $H(CF_2)_2$ (1b, 2d), R = Me (2a,d); C_6H_{13} (2b); $PhCH_2$ (2c).

fluorobut-2-enoic acid (3), was identified by comparing the ¹H NMR spectrum of the mixture with that of an authentic sample⁴ of 3 (a singlet at 5.05 ppm (CH) and two broadened signals at 3.0 and 6.2 ppm (2 NH₂)). Esters of aziridinecarboxylic acids containing no fluorine were formed as mixtures of *cis*- and *trans*-isomers. Compounds 2 were obtained as a single isomer, whose

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2795—2796, November, 1996.

^{*} Prepared by a known procedure; 2 characteristics of previously unknown ester 1b are given in the Experimental section.

Table 1. 3-Perfluoroalkylaziridine-2-carboxamides

Com- pound	R ^F	R	М.р. /°С	Molecular formula	Found (%) Calculated				Yield (%)
					С	Н	F	N	
2a	CF ₃	Me	74.0—74.5	C ₆ H ₉ F ₃ N ₂ O	39.62 39.56	<u>5.41</u> 4.98	<u>31.67</u> 31.29	15.19 15.38	69.8
2b	CF ₃	C ₆ H ₁₃	48.0-48.3	$C_{16}H_{29}F_3N_2O$	<u>59.50</u> 59.60	<u>9.14</u> 9.07	17.65 17.68	8.65 8.69	65.1
2c	CF ₃	PhCH ₂	127.0-128.0	$C_{18}H_{17}F_3N_2O$	63.99 64.66	<u>5.35</u> 5.12	<u>17.64</u> 17.07	8.47 8.38	71.3
2d	H(CF ₂) ₂	Me	70.0-71.0	C ₇ H ₁₀ F ₄ N ₂ O	<u>39.07</u> 39.26	<u>4.70</u> 4.71	35.04 35.48	12.77 13.08	73.2

Table 2. Spectral characteristics of 3-perfluoroalkylaziridine-2-carboxamides

Com- pound	RF	R	IR spectrum, v/cm ⁻¹		¹ H NMR spectrum (CDCl ₃ , δ, J/Hz)	
			C=0	N-H		
2a	CF ₃	Me	1640	3280	2.63 (s, 3 H, MeN); 2.68–2.75 (m, 2 H, $H_{\alpha}+H_{\beta}$); 2.85 (d, 3 H, <u>Me</u> NH, $J=4.0$); 6.80–7.10 (br. s, 1 H, NH)	
2b	CF ₃	C_6H_{13}	1620	3280	0.83-0.94 (m, 6 H, 2 Me); 1.18-1.53 (m, 16 H, 2 C_4H_8); 2.51-2.94 (m, 4 H, 2 CH_2); 3.17-3.36 (m, 2 H, $H_\alpha+H_\beta$); 7.01 (br. s, 1 H, NH)	
2c	CF ₃	PhCH ₂	1630	3280	2.75 (br. s, 1 H, NH); 3.17 (m, 2 H, $H_{\alpha}+H_{\beta}$); 4.02 (s, 2 H, NCH ₂ Ph); 4.39 (d, 3 H, NHCH ₂ , $J = 5.0$); 7.00–7.37 (m, 10 H, 2 Ph)	
2d	$H(CF_2)_2$	Me	1675	2970	2.60 (s, 3 H, MeN); 2.65–2.84 (m, 5 H, $H_{\alpha}+H_{\beta}+\underline{Me}NH$); 5.84 (tt, 1 H, HCF ₂); 7.63 (br. s, 1 H, NH)	

configuration could not be determined, since the signals of the ring protons in the ¹H NMR spectra overlap.

Experimental

IR spectra were recorded on a Specord 75 IR spectrophotometer. ¹H NMR spectra were recorded on a Tesla BS-567A spectrometer (100 MHz) using tetramethylsilane as the internal standard.

Ethyl 2,3-dibromo-4,4,5,5-tetrafluorovalerate (1b) (two diastereomers), b.p. 92–93 °C (8 Torr). IR (Nujol), v/cm^{-1} : 1745 (C=O). 'H NMR (CDCl₃), δ : 1.30 and 1.32 (t, 3 H, Me, J = 7.04 and 7.28 Hz); 4.28 and 4.29 (q, 2 H, CH₂); 4.50–5.00 (m, 2 H, H_a+H_B); 5.61–5.89 (tm, 1 H, HCF₂).

General procedure for the preparation of amides 2. Amine (4 mol. equivalents) was added portionwise (MeNH₂ was bubbled through) to a solution of α,β -dibromo-ester 1 in MeOH, which was shaken at intervals. The mixture was kept for 24 h at ~20 °C, and diluted with a fivefold volume of H₂O.

The product was extracted with CHCl₃, and the extracts were dried with MgSO₄ and filtered through a silica layer. The solvent was evaporated, and the residue was recrystallized from hexane.

References

- A. V. Eremeev, and V. G. Semenikhina, Khim. geterotsikl. Soed., 1980, 937 [Chem. Heterocycl. Comp., 1980 (Engl. Transl.)].
- R. C. Mcbee, E. R. Pierce, and A. M. Smith, J. Am. Chem. Soc., 1954, 76, 3724.
- V. I. Filyakova, R. R. Latypov, and K. I. Pashkevich, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 2134 [Russ. Chem. Bull., 1993, 42, 2047 (Engl. Transl.)].
- K. I. Pashkevich, V. I. Saloutin, A. N. Fomin, M. N. Rudaya, and L. G. Egorova, Izv. Akad. Nauk, Ser. Khim., 1986, 1586 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 1438 (Engl. Transl.)].

Received July 13, 1995; in revised form May 13, 1996